

# Direct Methanol Fuel Cell Material Handling Equipment Demonstration



**Todd Ramsden** 

National Renewable Energy Laboratory

May 10, 2011

MT004

This presentation does not contain any proprietary, confidential, or otherwise restricted information

#### **Overview**

#### Timeline

- Start: June, 2010
- Contract Award February, 2011
- Finish: December, 2012
- 15% Complete

#### **Budget**

- Total Project Funding
  - NREL: \$920K (40% cost share)
  - Oorja: \$1.4M (60% cost share)
- Funding received in
  - FY10: \$1M
- Funding in FY11: \$0

#### **Barriers Addressed**

 Non-technical issues preventing full commercialization of fuel cell systems

#### **Partners**

- Oorja Protonics
- Demonstration Sites:
  - Unified Grocers
  - Earp Distribution
  - Testa Produce

#### **Collaborations**

- NREL is partnering with Oorja Protonics on a two-year project to deploy and demonstrate direct methanol fuel cells (DMFCs) to provide power for Class III pallet jacks in four commercial wholesale distribution centers
- Lifts will be deployed in warehouses operated by:
  - Unified Grocers
  - Testa Produce
  - Earp Distribution



TESTA PRODUCE, INC.



### **Background – Relevance**

- Battelle Early Fuel Cell Markets study found that fuel cells can offer lower total cost of ownership in material handling applications compared to battery systems
- DOE and DLA are currently demonstrating the potential benefits of hydrogen polymer electrolyte membrane (PEM) fuel cells in material handling equipment (MHE) applications
- DMFCs hold promise to deliver many of the same operational benefits of hydrogen-powered fuel cell material handling equipment, including long runtimes, short refueling times, and increased productivity
- Liquid alcohol fuels like methanol offer reduced infrastructure costs and high fuel energy densities



### **Project Objectives – Relevance**

- The primary objective of this effort is to <u>deploy and test</u> <u>fuel cell-powered MHE</u> using renewable liquid fuels (in particular, methanol)
- A second objective is to <u>compile operational data of</u> <u>DMFC fuel cells and validate their performance</u> under real world operating conditions
  - Provide independent technology assessment focusing on fuel cell system and infrastructure performance, operation, and safety
  - Validation efforts will help illuminate the market viability of these fuel cell technologies – inform the business case for DMFCs
- Longer term objective is to <u>help transform the market for</u> <u>fuel cells in material handling applications</u> and provide information that enables successful deployments to be replicated

#### **DMFC Benefits – Relevance**

| Expected DMFC Benefits Over Battery MHE  |                                                                                                         |  |
|------------------------------------------|---------------------------------------------------------------------------------------------------------|--|
| Longer runtimes between fueling/charging | Oorja predicts 12-14 hours of autonomy on one fill                                                      |  |
| Increased battery & lift reliability     | Maintaining state-of-charge and eliminating deep discharge of batteries expected to extend battery life |  |
| Increased productivity                   | Due to reduced need for fills (vs. charging) and reduced time for fills (vs. charging) – 1-2 min/fill   |  |
| Lower GHG emissions                      | Compared to charging batteries using a typical electric grid mix                                        |  |
| Low cost infrastructure                  | Methanol storage/dispensing doesn't have high capital cost                                              |  |
| Low cost of ownership                    | Based on productivity, reliability, and battery life gains                                              |  |

### **Project Overview – Approach**

- Oorja Protonics will collect data on 75 DMFC-based Class III pallet jacks operating in four commercial wholesale distribution centers
  - 15-month deployment at each site
  - Two shifts per day, 6 days per week
  - Expecting 5,000 total operation hours on each unit
- DMFC systems will operate on bio-derived (renewable)

methanol provided by BioMCN

- NREL will compile and analyze data from the project
  - Provide a third-party assessment of the performance of DMFCs for material handling equipment

# **Project Tasks – Approach**

| Project Tasks & Timeframes                             |                                                                                                                                                                                                                                                                               |                                           |  |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|
| Task 1 DMFC Powerpack Prototyping and Integration      | <ul> <li>Ensure mechanical design compliance of DMFC with MHE</li> <li>Ensure electrical interface of DMFC with battery</li> <li>Develop data acquisition software</li> <li>Ensure safety codes and standards compliance of DMFC &amp; methanol fueling</li> </ul>            | 2-3 months<br>(concurrent<br>with Task 2) |  |
| Task 2 DMFC MHE Manufacturing and Testing              | <ul> <li>Conduct customer site &amp; MHE analysis</li> <li>DMFC system integration to meet specific customer needs</li> <li>DMFC manufacturing</li> <li>DMFC baseline performance, reliability and emissions testing</li> <li>Methanol infrastructure installation</li> </ul> | 4-5 months<br>(concurrent<br>with Task 1) |  |
| Task 3 DMFC Deployment, Data Collection, and Reporting | <ul> <li>On-going DMFC MHE operation &amp; maintenance</li> <li>Monthly data reporting on DMFC usage</li> <li>Project close-out and reporting</li> </ul>                                                                                                                      | 15-17<br>months                           |  |

## OorjaPac<sup>™</sup> DMFC – Approach

- Oorja will build, test, and deploy direct-methanol fuel cell systems on Class III pallet jacks using its OorjaPac Model 3 DMFC power pack
- OorjaPac is a variant of a PEM fuel cell system that uses an anode catalyst to extract hydrogen from the methanol molecule
- OorjaPac Model 3 specifications include:

Power output: 1.5kW

Output voltage: 24V/36V/48V

Methanol tank volume: 12 liters

Energy output: 20kWh per ta

20kWh per tank Photo courtesy of Oorja Protonics

- The OorjaPac acts as an on-board battery charger, allowing:
  - Grid independence
  - Elimination of battery change-outs and quick refueling
  - Increased autonomy (up to 14 hours on single refueling)

## Methanol Fueling Infrastructure – Approach

- Bulk methanol outdoor storage
  - 2,000-6,000 gallon UL-rated double-walled tanks meeting relevant NFPA codes for Class 1B flammable liquids
- Indoor dispensing via Oorja's OorjaRig<sup>™</sup> methanol dispenser
  - OorjaRig designed for indoor methanol fueling of OorjaPac DMFCs
  - Equipped with methanol storage in two standard 55-gallon drums, pumps, safety connect dispenser nozzle, sensors

 Cabinet is FM-rated for Class 1 Division 2 operation and meets NFPA Code 30

 Oorja estimates total infrastructure costs to be as low as \$70K per site<sup>1</sup>

<sup>1</sup>http://www.oorjaprotonics.com/benefits/competition.html

Photo courtesy of Oorja Protonics

### NREL H2 Secure Data Center – Approach

- Analyze fuel cell system and methanol infrastructure
- Establish a baseline of real-world operations
- Use HSDC data processing and analysis capabilities first developed for FCVs and expanded to MHEs
- Support FC market growth by analyzing technology and performance relevant to the value proposition
- Report on technology to FC & MHE stakeholders



### **Contract Award – Accomplishments**

| Contract Award Process |                                                                                      |  |
|------------------------|--------------------------------------------------------------------------------------|--|
| Pre-Solicitation       | Investigated fuel cell manufacturers and determined which had necessary capabilities |  |
| Solicitation           | Competitive RFP for direct-liquid fuel cell systems for MHE                          |  |
| Award                  | Oorja Protonics selected as subcontractor;<br>Contract awarded in February 2011      |  |

#### **Contract Hurdles:**

- •Small start-up companies companies without experience with government contracting and approved invoicing systems may require different contract vehicles
- Methanol liquid fuel, toxic air pollutant; requires significant
   NEPA-related review and oversight

#### **DMFC Integration & Manufacture – Accomplishments**

- Prototype OorjaPac DMFC systems tested for mechanical compliance with target customer MHE systems
  - Proper mechanical linkage, safety, ergonomics, counter-balance
- Completed OorjaPac systems integration with customer MHE to ensure proper performance and battery charging
  - Installed and operated data loggers to benchmark performance
  - Determined necessary FC cell count to meet customer performance needs based on data-loggers at customer sites
  - Developed necessary system algorithms for hybridization
- Additional project accomplishments:
  - Developed algorithms and software for remote data acquisition
  - Ensured compliance of OorjaPac DMFC systems and methanol infrastructure with relevant federal, state, and local safety and environmental regulations
  - 24 of total 75 DMFCs in project have been built & delivered

### Forklift Range Extension – Accomplishments

Oorja testing of Class 3
MHE using data loggers
shows large improvement
using OorjaPac over
batteries alone

Run time OorjaPac v/s Battery 14 hours of operation on single refuel using OorjaPac, greater than twice the autonomy of a battery pallet jack



NOTE: Battery run time from SSI data logger for a 24V pallet jack

#### **Enhanced Battery Life – Accomplishments**

Oorja testing shows use of OorjaPac avoids deep discharge of battery pack typically seen in battery-only MHE

US Foods Battery SOC w & w/o OoorjaPac

→ Voltage w/o Load — Voltage Under Load

Oorja predicts maintaining battery state-of-charge and avoiding deep discharges will extend battery life by 50%



Note: Data from Oorja Protonics

## Next Steps & Project Schedule – Future Work

# **Future Project Work**

Late 3Q-Early 4Q FY2011

#### **DMFC Deployment Begins at All Sites**

- OorjaPak DMFC powerpacks built & deployed
- OorjaRig and methanol infrastructure deployed

Ongoing for 15 Months, Ending 4Q FY2012

#### **DMFC Deployment & Data Collection**

- Ongoing DMFC use at all sites
- Ongoing DMFC and infrastructure maintenance
- Ongoing data collection and compilation
- Quarterly project reporting
- Detailed data analysis and reporting every 6 months

NREL lead, with support of Oorja

1Q FY2013

#### **Project Close-Out**

- Equipment de-commissioning or transfer as needed
- Final Reporting [NREL lead, with support of Oorja]

### **Characterize Deployment Over Time – Future Work**

| Performance Summary                        |     |
|--------------------------------------------|-----|
| Site Operations                            |     |
| Number of Fuel Cell Forklifts in Operation | 75  |
| Hours of Operation for the Combined Fleet  | TBD |
| Amount of Methanol Dispensed (gal)         | TBD |
| Number of Fueling Events                   | TBD |
| Infrastructure                             |     |
| Average Fueling Time (minutes)             | TBD |
| Average Fueling Rate (gal/min)             | TBD |
| Safety Incidents                           | TBD |
| Forklifts                                  |     |
| Hours of Operation Between Fueling         | TBD |
| Hours of Operation per gallon Methanol     | TBD |
| Average Battery Life (months)              | TBD |

### **Analyses of Performance & Operation – Future**



### Fuel Cell System

- System Operating Hours
- Operating Hours Between Fuelings
- Average Daily Usage
- Battery State-of-Charge



### **Analyses of Performance & Operation – Future**

#### **Methanol Infrastructure**

- Fueling Events & Methanol Dispensed
- Fueling Time & Rate
- Daily Methanol Use
- Infrastructure Safety





## **Summary**

#### Collaborations

 Subcontract with Oorja Protonics, DMFC MHE deployed at warehouses operated by Unified Grocers, Testa Produce, and Earp Distribution

#### Relevance

- Hydrogen-based fuel cell forklifts a rapid growth market segment for fuel cells; ongoing demonstration projects funded by DOE and DOD
- Direct methanol fuel cell forklifts offer many of the same benefits (long runtimes, short refueling times, increased productivity)

#### Approach

- ~2 year project with 15-month deployments of 75 DMFC Class III MHEs in commercial warehouse and distribution operations
- Collect, compile, and analyze operational data to establish performance baselines and evaluate the value proposition for DMFCs in MHE applications

#### Technical Accomplishments and Progress

- Contract awarded February 2011
- Prototype testing and system integration completed
- Initial testing shows improved operational range and improved battery life

#### Future Work

- Initiate deployment of DMFC units at all sites
- Conduct data analyses to assess performance & validate value proposition

### **Question and Discussion**

### Thanks!!



Photo courtesy of Oorja Protonics

Todd Ramsden
National Renewable Energy Lab
todd.ramsden@ nrel.gov
303-275-3704